

Ist & IInd Floor, Skylark Building, Near Leela Cinema, Nawal Kishore Road, Hazratgani, Lucknow. Call : 7080111582, 7080111595

MM : 120

Class-XII JEE

TIME : 60 MINUTES

NOTE: There are three sections, Physics, Chemistry and Maths. Each section carries 10 questions with four marks each and all are compulsory.

ROUGH WORK

1

(1) 20 cm	(2) 50c m
(3) 40 cm	(4) 100 cm

06. In a reflecting telescope, a secondary mirror is used to:

(1) reduce the problem of mechanical support

(2) make chromatic aberration zero

(3) move the eyepiece outside the telescopic tube

(4) remove spherical aberration

- 07. Two convex lenses of focal length 20cm each are placed coaxially with a separation of 60cm between them. The image of the distant object formed by the combination is at _____ from the first lens.
 (1) 80cm (2) 100cm s
 - (1) 80cm (2) 100cm (3) 50cm (4) 40cm
- 08. A single slit of width a is illuminated by a monochromatic light of wavelength 600 nm. The value of 'a' for which first minimum appears at $\theta = 30^{\circ}$ on the screen will be : (1) 0.6 um (2) 1.2 um

(1) 0.0 µm	(2) 1.2 µm
(3) 1.8 um	(4) 3 um

09. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: EM waves used for optical communication have longer wavelengths than that of microwave, employed in Radar technology.

Reason R: Infrared EM waves are more energetic than microwaves, (used in Radar) In the light of given statements, choose the correct answer from the options given below. (1) Both A and R are true but R is NOT the correct explanation of A
(2) A is false but R is true
(3) A is true but R is false
(4) Both A and R are true and R is the correct explanation of A

10. As per given figure A, B and C are the first, second and third excited energy levels of hydrogen atom respectively. If the ratio of the

two wavelengths (i.e. $\frac{\lambda_1}{\lambda_2}$) is 7/4n, then value of n will be

 0.5 molal aqueous solution of a weak acid (HX) is 20% ionised. If K_f for water is 1.86 K kg mol⁻¹, the lowering in freezing point of the solution is:

(1) 0.56 K	(2) 1.12 K
(3) –0.56 K	(4) –1.12 K

12. The compound C_7H_8 undergoes the following reactions:

 $C_7H_8 \xrightarrow{3Cl_2\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$

Find the compound C

- (1) m-bromotoluene
- (2) o-bromotoluene
- (3) 3-bromo-2, 4, 6-trichlorotoluene
- (4) p-bromotoluene

ROUGH WORK

K

Т

Α

0

Α

С

Н

I N

G

L

Ν

S

т

Т

Т

U

Т

Е

13. Which one is the most acidic compound?

The molar conductances (Λ^o_m) at infinite D 14. dilution of NaCl, HCl and CH₃COONa are Ν 126.4, 425.9 and 91.0 S $cm^2 mol^{-1}$ Ε W respectively. (Λ_m^o) for CH₃COOH will be: (1) $425.45 \,\mathrm{S}\,\mathrm{cm}^2\,\mathrm{mol}^{-1}$ (2) $180.5 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$ S Т

15. The given graph is a representation of kinetics of a reaction.

 $(4) 390.5 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$

Α

Ν

D

A R

D

С 0 A С

Н I

Ν

G

L

Ν

S Т

L

т

U

Т

Ε

 $(3) 290.8 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$

The y and x axes for zero and first order reactions, respectively are (1) zero order (y = concentration and x = time), first order ($y = t_{1/2}$ and x = concentration) (2) zero order (y =concentration and x =time), first order (y = rate constant and x =concentration) (3) zero order (y = rate and x=concentration), first order ($y = t_{1/2}$ and x = concentration)

(4) zero order (y = rate and x = concentration), first order (y = rate and x = $t_{1/2}$)

When neutral or faintly alkaline $KMnO_4$ is 16. treated with potassium iodide, iodide ion is converted into 'X'. 'X' is:

 $(1) I_{2}$ (2) IO_4^-

(3) IO_3^- (4) IO^{-}

17. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating?

18.	Match List-I with List	Match List-I with List-II.		
	List-I	List-II		
	(a) $[Fe(CN)_6]^{3-}$	(i) 5.92 BM		
	(b) $[Fe(H_2O)_6]^{3+}$	(ii) 0 BM		
	(c) $[Fe(CN)_6]^{4-}$	(iii) 4.90 BM		
	(d) $[Fe(H_2O)_6]^{2+}$	(iv) 1.73 BM		
	Choose the correct answer from the options			
	given below.			
	(1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)			
	(2) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)			
	(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)			
	(4) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)			
19.	$A \xrightarrow{reduction} B \xrightarrow{CHO}$	$C_{1_3/KOH} \rightarrow C \xrightarrow{reduction} \rightarrow$		

N-methylaniline,

The compound A is

ROUGH WORK

ROUGH WORK

(1) $x^2 y_1 = y$	(2) $xy_1 + 2y_2 = 0$
(3) $xy_2 + 2y_1 = 0$	(4) none of these

If \vec{a}, \vec{b} and \vec{c} are three vectors such that 29. $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5,$ then the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ is (1)0(2)1(4) 38(3) -19 D The vector equation of the symmetrical form 30. equation ofstraight line of N E W $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$ is (1) $\vec{r} = (3\hat{i} + 7\hat{j} + 2\hat{k}) + \mu(5\hat{i} + 4\hat{j} - 6\hat{k})$ S T A N D A R D (2) $\vec{r} = (5\hat{i} + 4\hat{j} - 6\hat{k}) + \mu(3\hat{i} + 7\hat{j} + 2\hat{k})$ (3) $\vec{r} = (5\hat{i} - 4\hat{j} - 6\hat{k}) + \mu(3\hat{i} - 7\hat{j} - 2\hat{k})$ (4) $\vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \mu(3\hat{i} + 7\hat{j} + 2\hat{k})$ C O A C Н I Ν G L Ν S T I T U

ROUGH WORK

T E